
EMBEDDABLE SOLUTIONS

Scan QR Code For **More Information**

GENERAL OVERVIEW

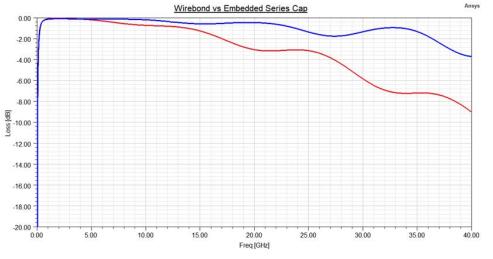
As RF systems begin to push into higher frequencies within smaller form factors, there has been a recent shift in the industry towards embedding passive components. By integrating ultrathin capacitors into the printed circuit board, designers will see increased board space, improved RF performance, and significantly reduced trace inductance.

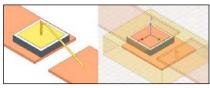
For seamless embedding in RF applications, KYOCERA AVX offers a wide range of single layer capacitors: SLC, MOS, MIS, MIM, and more in development.

Capacitor Capacitor

Single Layer **Resistance Capacitor**

EMBEDDING MLCC'S VS SLC'S


	Embedded MLCC	Embedded SLC and MOS Capacitors
Typical RF Applications	MLCC's are not recommended for RF embedding use	Coupling, Impedance Matching, High-Speed Decoupling
Profile	Thick- Z dimension makes it difficult to use in non-surface mount situations	Ultra Thin- Z dimension allows for optimal embeddable design
Q-Factor	Moderate- Adequate Q in low to mid frequencies and falls off near SRF	High- Improved frequency response and RF performance Tunable- Resistance Capacitor can replace an inline resistor in cases that require it
CTE Mismatch Risk	High- The low CTE of ceramic can cause cracks and delamination on the MLCC over time	Low- SLCs can be customized for embedding with better material matching
Design Flexibility	Low- 2 termination on MLCC's limit versatility in layouts	High- Components can be made rectangular or square to match design needs. Large surface area available for via placement.


EMBEDDABLE SOLUTIONS

WIREBOND VS. EMBEDDED-MODELED PERFORMANCE

MOS Cap Performance Modeled in Ansys HFSS

Left: 10pF MOS capacitor on Rogers 4350 test board with wirebond connection.

Right: 10pF MOS capacitor embedded in epoxy filled Rogers 4350 test board with via to transmission line.

Wirebond performance degrades at 5GHz.

Embedded method allows cap performance to extend beyond 20GHz with minimal loss.

PRODUCT LINEUP

MOS Capacitor				
	Dielectric	SiO ₂		
	Frequency	≤100 GHz		
	Capacitance	1 - 1,200 pF		
	Voltage	25 - 200 V _{DC}		
	Thickness	5 - 10 MIL		

Wirebond Series Cap

MIS Capacitor		
	Dielectric	SiON
	Frequency	≤100 GHz
	Capacitance	1 - 1,800 pF
	Voltage	25 - 200 V _{DC}
	Thickness	5 - 10 MIL

MIM Capacitor				
	Substrate	Alumina, Quartz		
	Frequency	≤100 GHz		
	Capacitance	1 - 15 pF		
	Voltage	100 V _{DC}		
	Thickness	5, 10 MIL		

Single Layer Ceramic Capacitor			
	Dielectric	NPO-X7R	
	Frequency	≤100 GHz	
	Capacitance	1.0 pF - 10 nF	
	Voltage	25 - 200 V _{DC}	
	Thickness	4.5 -12 MIL	

NORTH AMERICA

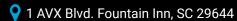
Mohammed Abu-Naim Product Marketing Manager

Email: mohammed.abu-naim@kyocera-avx.com

EUROPE

Embedded Series Cap

Houda Rais Product Marketing Manager


Email: houda.rais@kyocera-avx.com

ASIA

Dennis Hu Product Marketing Manager

Email: qiangqiang_hu@kyocera.com.cn

